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Abstract 

 This paper analyzes strategies of the boardgame RISK using Markov chain 

analysis and Monte-Carlo simulation in order to compare state-based strategies against 

sequentially dependent or non-memoryless strategy policies.  Previous work had focused 

on calculating the probability of winning based on using all available engagement 

strategies and battling until either the attacker is unable to continue engaging the enemy 

or until the defender is annihilated.  This research project applied decision analysis 

methods to look at alternate strategy policies. 

 Two primary models were utilized to analyze these strategy policies.  First, a 

computer model was developed that would build a Markov chain with the associated 

transition probabilities based on an initial set of conditions and a specified set of rolling 

strategies.  Second, a Monte-Carlo simulation was developed that would simulate rolling 

the dice in order to analyze sequentially dependent strategy policies that cannot be 

modeled via Markov chains.  These strategies were then compared based on the 

attacker’s probability of winning and the expected difference between force strengths at 

the end of a series of engagements. 
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The Comparison of Strategies used in the game of RISK  
via Markovian Analysis and Monte-Carlo Simulation 

 

I. Introduction 

Background 

The purpose of this project was to analyze the operational strategies of the 

stochastic wargame RISK.  Wargaming is typically used to analyze future requirements, 

assess current capabilities and vulnerabilities, and to train specific tactics, techniques, and 

procedures based on a “real-world” or hypothetical scenario and/or operations plan.  

However, wargaming can also be used to teach strategic thinking and the principles of 

quality decision making.   

Historically, games like chess have been used to sharpen one’s ability to think 

strategically and to form logical courses of action.  However, chess is only a wargame in 

a limited sense. When the game begins, both opponents have complete information, and 

the battle outcomes are deterministic (Herman, et al. 2008) 

On the other hand, modern wargames are vastly more realistic and integrate stochastic 

effects into the design of the game.  Computer based wargames typically use complex 

“black box” algorithms to determine battle outcomes.  Therefore, the ideal wargame to 

study is one where the battle outcomes are stochastically determined, but not too complex 

to be analyzed and discussed in an academic setting.  

For this project, the board game RISK was used to analyze operational strategies 

in a stochastic wargame environment.  The scenario presented in the game of RISK is 

well-known and does not require any specialized training or skills to play.  Furthermore, 

the stochastic effects (i.e. the “black box” algorithms) can be modeled exactly. 



2 

In terms of military doctrine, RISK effectively models the three levels of war.  

First, a player must develop strategies to use at the strategic or global level in order to 

effectively determine which territories to fortify, which territories to invade, and what 

types of alliances to form with other players.  Although the development of global 

strategies is outside of the scope of this paper, further information on this topic can be 

found in (Honary, 2010). 

Secondly, a player must develop operational strategies to determine how the 

conquest of opposing territories can be linked to meet the overall strategic objective of 

winning the war.  Additionally, it is at the operational level that the player must decide 

which tactical strategies to employ as well as the required force strength to conduct any 

potential operation.  Thirdly, a player must develop tactical strategies to determine how 

many armies to use during each engagement.  

Rules of RISK 

The game of RISK was introduced to the United States in 1959.  The game is 

designed to be played by 2 to 6 players.  Each player has color-coded pieces which 

represent the number of armies each player has. Over the years the game pieces have 

changed slightly, with different types of pieces or figures representing a different number 

of armies.   One of the most familiar sets of game pieces consists of figures where an 

infantryman represents one army, a cavalryman represents five armies, and an artillery 

piece represents ten armies.  

The game board has also seen minor changes with regards to theme and layout; 

however, all of these games share the commonality of 42 territories across six different 

continents.  The game setup has evolved slightly over time.  Originally, playing cards that 
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represented each territory were shuffled and distributed to each player.  These cards 

represented the players’ initial set of territories.  When the game was revised in 1963, 

cards were no longer used to determine starting positions; rather each player in turn was 

able to pick any unoccupied territory until all territories had been claimed.   

Additionally, the number of reinforcements a player receives on his or her turn 

has remained relatively unchanged.  A player receives one army for every third territory 

he or she occupies.   A player can also choose to turn in playing cards (which are 

awarded if a player defeats another player on his or her turn) for a specified number of 

armies. 

However, the way the game is played has remained consistent.  According to the 

official rules of the game, there are seven phases during a player’s turn.  Those phases are 

as followed: 

1. Determine the number of armies the player is entitled to receive. 

2. Place these armies in any of the territories the player occupies. 

3. Attack another player’s territory. 

a. A player can only attack from an adjacent territory. 

b. At least one army must remain in the currently occupied territory and 

cannot be used to attack. 

4. Cease attacking the other players, either by choice or because the player does 

not have any enough armies. 

5. Make a free move.  The player can move any number of armies from one 

territory to one adjacent territory.  Note: at least one army must be left in each 

occupied territory. 
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6. If the player defeated another player during his or her turn, then that player 

receives a playing card.  Note: only one playing card can be received during 

each turn. 

7. The player ends his or her turn by passing the “attacker’s” dice to the next 

player. (Parker Brothers, 1959) 

Table 1 shows some of the differences in the rules of the game based on the 

revision year. 

 
Table 1 - Summary of Different Rules of RISK 

Battle Calculus 

Before looking at the rules that govern how battles are conducted, two terms need 

to be clarified. First, the term engagement is defined as a single battle between two 

opposing forces and refers to a single roll of the dice by both players.  Second, the term 

operation is defined as a series of battles between two opposing territories.  Note that a 

single operation can consist of several engagements, and a player can also choose to 

conduct several operations per turn. 
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Additionally, for the purpose of discussions throughout this paper, the following 

variables are used to express force strength and attrition: 

1. Attacker state variables: 

• 𝑁𝐴′ = Total number of attacker’s armies 

• 𝑁𝐴 = The number of attacker’s armies available for a specific operation  

• 𝑛𝑎 = The number of attacker’s armies used during an engagement 

•  The number of attacker’s armies lost during a specific operation 

• 𝐿𝑎 = The number of attacker’s armies lost during an engagement 

2. Defender state variables: 

• 𝑁𝐷′ = Total number of defender’s armies 

• 𝑁𝐷 = Total number of defender’s armies available for a specific operation 

• 𝑛𝑑 = Total number of defender’s armies used during an engagement 

• 𝐿𝐷 = Total number of defender’s armies lost during a specific operation   

• 𝐿𝑑 = Total number of defender’s armies lost during an engagement 

The rules that govern the conduct of battle in the game of RISK are as follows.  

First, the attacker chooses how many armies will attack and rolls one die for each army in 

the engagement.  The attacker can only engage with a maximum of three armies, even if 

more armies are available.  Additionally, the attacker cannot attack with the last 

remaining army in that territory.  To put these rules in terms of the previously defined 

variables: 

 

1. 𝑛𝑎 ≤ 3 
 

2. 𝑛𝑎 ≤ 𝑁𝐴 − 1 
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Second, the defender chooses how many armies will defend and rolls one die for 

each army in the engagement.  The defender can use all available armies in the defending 

territory.  To put these rules in terms of the previously defined variables: 

1. 𝑛𝑑 ≤ 2 

2. 𝑛𝑑 ≤ 𝑁𝐷 

The rules that govern battle calculus are as follows: First, each side rank orders 

their respective dice from highest to lowest.  Next, they compare the highest die rolled on 

each side, and the higher die wins that portion of the engagement.  If both sides rolled 

more than one die, then they compare the next highest die rolled, and the higher die wins 

that portion of the engagement.  If the compared dice are equal, then the defender wins 

the tie breaker.  It is possible for one side to win the first portion of the engagement and 

the other side to win the second.  In that case both sides lose one army each.  It is 

important to note that maximum number of total armies lost is equals the minimum 

number rolled by either side. 

The following figure has three examples of various battle outcomes based on the 

dice combinations rolled. 

 
Figure 1 - Battle Outcome Examples 
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Each battle outcome can be expressed in terms of the associated probability of 

winning, losing, or tying.  Theses probabilities can easily be calculated directly or by 

enumerating every possible combination.   

The possible outcomes and the associated probabilities based on a single attacker 

fighting against a single defender is displayed if Figure 2.  In this case there is a .417 

probability that the attacker will win and the defender will lose one army, and a .583 

probability that the defender will win and the attacker will lose one army. 

 
Figure 2 - Probability Outcomes (1 vs 1) 

The possible outcomes and the associated probabilities based on two attacking 

armies fighting against a single defender is displayed if Figure 3.  In this case there is a 

.579 probability that the attacker will win and the defender will lose one army, and a .421 

probability that the defender will win and the attacker will lose one army. 

 
Figure 3 – Probability Outcomes (2 vs 1) 
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The possible outcomes and the associated probabilities based on three attacking 

armies fighting against a single defender is displayed if Figure 4.  In this case there is a 

.660 probability that the attacker will win and the defender will lose one army, and a .340 

probability that the defender will win and the attacker will lose one army. 

 
Figure 4 - Probability Outcomes (3 vs 1) 

The possible outcomes and the associated probabilities based on a single attacker 

fighting against a two defending armies is displayed if Figure 5.  In this case there is a 

.225 probability that the attacker will win and the defender will lose one army, and a .745 

probability that the defender will win and the attacker will lose one army. 

 
Figure 5 - Probability Outcomes (1 vs 2) 

The possible outcomes and the associated probabilities based on a two attacking 

armies fighting against two defending armies is displayed if Figure 6.  In this case there 

are three possible outcomes.  There is a .228 probability that the attacker will win and the 

defender will lose two armies, a .448 probability that the defender will win and the 
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attacker will lose two armies, and a .324 probability that both sides will one portion of the 

engagement and both sides will lose one army. 

 
Figure 6 - Probability Outcomes (2 vs 2) 

Finally, the possible outcomes and the associated probabilities based on a three 

attacking armies fighting against two defending armies is displayed if Figure 7.  Once 

again, there are three possible outcomes.  There is a .372 probability that the attacker will 

win and the defender will lose two armies, a .293 probability that the defender will win 

and the attacker will lose two armies, and a .336 probability that both sides will one 

portion of the engagement and both sides will lose one army. 

 
Figure 7 - Probability Outcomes (3 vs 2) 

  



10 

A consolidated list of the battle outcome probabilities are shown in Table 2. 

 
Table 2 - Probability Outcomes 

Research Objectives 

 The game of RISK has several characteristics that make it ideally suited for an 

academic discussion regarding military strategy, military art, decision analysis, and 

mathematical modeling.  The overall objective for this research project is to develop a 

method for comparing state-based strategies to sequentially dependent policies in a 

stochastic wargame environment that could be used in an academic or seminar setting to 

teach principles of operations analysis.   



11 

II. Literature Review 

Articles 

There have been several articles written about calculating the probability of 

various stochastic outcomes within the context of board games.  Ash and Bishop (1972) 

were the first ones to use Markov chains to find the steady state probabilities of 

occupying a specific property in the game of Monopoly.  For the most part, this was a 

straight forward computation, with the only assumption pertaining to how long a player 

stays in jail.  Although this was an interesting approach to calculating probability 

distributions, there are significant differences between the game of Monopoly and the 

game of RISK that need to be addressed before the Markovian method could be applied 

to the game RISK.  First, in Monopoly each player has to roll the dice.  In RISK, each 

player has a choice whether or not to attack and, if so, how many dice to use.  

Additionally, RISK should be modeled using absorption probabilities as opposed to 

steady-state probabilities. 

Tan (1997) partially answered these differences by showing how a Markov chain 

could be modeled using the probabilities associated with the stochastic outcomes of the 

dice rolls in the game of RISK.  Unfortunately, Tan miscalculated the transition 

probabilities associated with the joint distributions when both players used more than one 

die during the engagement.  Tan’s calculations for these joint distributions mistakenly 

assumed an independent relationship between the highest dice combinations and the 

second highest dice combinations. 

Osborne (2003) corrected Tan’s mistake and concluded the same transition 

probabilities that were calculated in the previous chapter.  Osborne calculated the 



12 

probability of winning given the initial force strengths of both the attacker and defender; 

however, Osborne only looked at one strategy policy: the attacker will continue to attack 

until either the defender has been destroyed or the attacker has no more available armies.  

It is important to note that Osborne’s strategy policy also used one attacking army to fight 

against two defending armies when the attacker only had one remaining available army 

and the defender had more than one army.  However, Osborne effectively demonstrated 

that the probabilities associated with the game of RISK can be modeled using a Markov 

chain. 

Blatt (2002) also used Markov chains to calculate the probabilities of winning in 

the game of RISK.  However, Blatt expanded the probability distributions of the 

associated outcomes by looking at the possibility of using dice that had more than just six 

sides.  The results of this study are listed in the following table: 

 
Table 3 - General Formula for Computing Transition Probabilities (Blatt, 2002) 
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Instead of using Markovian analysis, other authors utilized dynamic programming 

to model RISK.  Interestingly, the rules associated with RISK are not the same around the 

world.  Koole (1994) discusses an optimal dice rolling policy for the Dutch version.  

Dutch rules allow the defender to roll the second die after seeing the dice roll outcomes 

of the attacker.  Consequently, the defender would only want to roll the second die if the 

second highest attacker die was less than four, which would favor the defender’s chance 

of success. 

Malliphant and Smith (1990) also used dynamic programming to model RISK.  

Their analysis included the probability of success for an attacker playing optimally and 

stopping when the attacker’s strength dropped below that of the defender.  The results 

from this analysis will compared to other strategies later in this paper. 

Markov Chains Theory 

 According to Kemeny and Snell (1976), a Markov process is memoryless such 

that [fn+1 = sj+1 | (fn = si) , (fn-1 = si-1), (fn-2 = si-2) ,…, (fo = so) ] = P[fn+1 = sj+1 | (fn = si)].   

An absorbing Markov chain can be represented by the transition matrix 

𝑃 =  �𝑄 𝑅
𝑂 𝐼 � 

where Q is the matrix of transition probabilities among the transient states, R is the 

matrix of transition probabilities for absorption from the transient states, 0 is a matrix of 

zeroes, and I is an identity matrix (representing transitions within the absorbing states). 

Partitioning P in this manner allows for relatively easy computation of key operating 

characteristics of the Markov chain. Specifically, the absorption probabilities can be 

computed in the following manner. 
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Let aij =P[process enters absorbing state i given that the initial state is j]. These 

probabilities can be expressed by the system of equations: 

𝑎𝑖𝑗 = 𝑝𝑖𝑗 + �𝑝𝑖𝑘 ∗ 𝑎𝑘𝑗
𝑘

 

which can be solved recursively (k is indexed over all transient states). This system can 

be written in matrix form as: 

𝐴 = 𝑅 + 𝑄𝐴 

Solving for A gives  

𝐴 = [𝐼 − 𝑄]−1𝑅 

and the corresponding absorption probabilities of interest can be picked out of the matrix 
.  
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III.  Methodology 

Markov Chain Method 

Because one of the purposes of this paper is to compare state-based strategies 

with sequentially-dependent policies, the Markovian analysis summarized during the 

literature review was determined to be the best method for modeling the state-based 

strategies.  The states of the Markov process that models an engagement corresponds to 

the number of armies each player has available for use in that particular engagement. A 

transition event corresponds to the roll of the dice within a particular engagement. 

Because the engagement is always initiated and broken off by the attacker, the point at 

which the attacker ceases the attack is considered an absorbing state.  These absorption 

states correspond either to a state where the attacker no longer seeks conquest over the 

opponent’s territory or when the defender is defeated. 

Consistent with the rules of the game, an attacker can never have fewer than two 

armies (the attacker cannot attack using the last remaining army since at least one army 

must be left behind). Thus we have a two-dimensional state space N = {number of armies 

available to the attacker; number of armies available to the defender} = {NA vs ND}. 

Using these descriptions, the set of states for the attacker is N(A) = {2, 3, • • •,M} and for 

the defender N(D) = {0, 1, 2, • • •,N}. Thus, the two-dimensional state space is described 

by the set of 2-tuples, Xk = {(m, n) | m ∈ N(A), n ∈ N(D)} on the kth transition.  The 

transition probabilities are P[NA = r, ND = s) | NA = m, ND = n)] which are represented by 

P[(r, s), (m, n)]. The transition probabilities are computed based on the attack and defend 

strategies to be employed during the play of the game.  
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The set of states to which transitions can occur and the probabilities of those 

transitions are dependent on the specific attacker and defender strategies that are 

employed. It should also be evident that since these attrition probabilities are based on 

pure chance (the dice rolls), the transition probabilities are stationary. 

Given the attrition probabilities stated in the previous sections, the attacker and 

defender strategies, and the cutoff rule(s) to be employed, various performance 

characteristics for the system can be calculated. These include the probability of the 

attacker winning or losing a specific operation, as well as other expected end state 

strength and expected losses.  All of these calculations can be derived through Markov 

chain analysis.  The basic Markov chain analysis is presented and specific examples 

follow. 

Classifying the states of the Markov process, we have that all states corresponding 

to engagements are transient states, with absorbing states for those states where the 

engagement terminates, either for the attacker breaking off the attack, or the defender 

being annihilated. As previously stated, the attrition is a “must die” circumstance, so that 

transitions during any particular engagement can never increase armies for either side, 

and the system must ultimately land in one or the other of the absorbing classes, where 

either the attacker wins or loses the battle. The absorbing class corresponding to the 

attacker win situation always occurs when, through a series of engagements the 

defender’s force is ultimately wiped out, and the attacker occupies that territory. 

A. These probabilities are used extensively in subsequent analyses in this paper. 

It is then relatively simple to create a matrix of the end states associated with the 

absorption matrix.   
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𝑆 = �
𝑁𝐴𝑠1 𝑁𝐴𝑠2          … 𝑁𝐴𝑠𝑛
𝑁𝐷𝑠1 𝑁𝐷𝑠2          … 𝑁𝐷𝑠𝑛

� 

 
where S represents the matrix of end states,  each element in the top row is the attacker’s 

end state that is associated with the absorption matrix, and each element in the bottom the 

defender’s end state that is associated with the absorption matrix.  When the absorption 

and end state matrices are multiplied, the product is the expected end state for both the 

attacker and defender:  

𝐸[𝑆] = 𝐴 ∗ 𝑆𝑇 
 

Consequently, by subtracting this number from the initial force strength, the result 

is the expected losses for both sides. 

𝐸[𝐿𝐴] = 𝑁𝐴0 −  𝐸[𝑆𝐴] 

 

𝐸[𝐿𝐷] = 𝑁𝐷0 −  𝐸[𝑆𝐷] 

 
 
Markov Chain Calculations 

The Markov chain then becomes an operation plan that outlines what tactical 

strategy to utilize given a particular state.  Figure 8 shows an operational strategy that 

utilizes every possible tactical strategy.  This mirrors what the previous journal articles 

discussed.   
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Figure 8 - Markov Chain (utilizing all tactical strategies) 

Figure 9 shows an operational strategy the employs all tactical strategies except 

for a single attacker against two defenders scenario. 
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Figure 9 - Markov Chain (excluding 1 vs 2) 

The difference between Figure 9 and Figure 8 is the missing row of possible 

transitions along the bottom row. Figure 10 shows an operational strategy where the 

attacker ceases attacks when that attacker force strength drops below the defender’s force 

strength. 
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Figure 10 - Markov Chain (NA > ND) 

 
A computer model was developed that would quickly create Markov matrices based on 

specified initial conditions and selected strategies.  The inputs for the model are as 

follows: 

1. Initial attacker force strength: the number of armies the attacking force has 

initially. 
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2. Initial defender force strength: the number of armies the defending force has 

initially. 

3. Attacker strategy: the tactical strategies the attacker will employ based on the 

scenario. This strategy is coded using a six digit string.  The first digit represents 

how many armies the attacker will utilize in a three against one scenario.  The 

second digit represents how many armies the attacker will utilize in  a three 

against two scenario.  The third digit represents how many armies the attacker 

will utilize in a two against one scenario.  The fourth digit represents how many 

armies the attacker will utilize in a two against two scenario.  The fifth digit 

represent how many armies the attacker will utilize in a one against one scenario.  

Finally, the sixth digit represents how many armies the attacker will utilize in a 

one against two scenario.  For example, the first Markov chain created in Figure 8 

would be coded as 332211; whereas the Markov chain created in Figure 9 would 

be coded as 332210.    

4. Defender strategy: the tactical strategy the defender will employ.  The defender 

only has two options.  The defender can use two armies until only one is 

available, or the defender can always choose to use only one army. 

5. Independent versus dependent strategy: determines if the attacker’s strategy 

should be modeled independent or dependent upon the defender’s strategy.  It is 

only a factor when the defender chooses to defend with only one army.  

6. Attacker end state: the minimum number of required attacking armies, which 

could be based on a constant value, based on a percentage of defender strength, or 

a combination of both. 
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7. Initial attacker attrition: creates an absorbing state if the attacker chooses to cease 

engagements if the attacker force drops below a specified value and the defender 

has not lost any engagements.   

A picture of the graphical user interface used by the program is displayed in 

Figure 11. 

 
Figure 11 - Markov Model Interface 

First, the Markov program will construct a P-matrix and fill in the appropriate 

transition probabilities.  An example based on a (𝑁𝐴 = 5, 𝑁𝐷 = 2) initial state is shown 

in Figure 12.  

 
Figure 12 - P-Matrix Output 

P-Matrix  5 vs  2  4 vs  1  3 vs  2  3 vs  1  2 vs  1  1 vs  2  1 vs  1  5 vs  0  4 vs  0  3 vs  0  2 vs  0
 5 vs  2 0 0.3357767 0.2925669 0 0 0 0 0.3716564 0 0 0
 4 vs  1 0 0 0 0.3402778 0 0 0 0 0.6597222 0 0
 3 vs  2 0 0 0 0 0.3240741 0.4483025 0 0 0 0.2276235 0
 3 vs  1 0 0 0 0 0.4212963 0 0 0 0 0.5787037 0
 2 vs  1 0 0 0 0 0 0 0.5833333 0 0 0 0.4166667
 1 vs  2 0 0 0 0 0 1 0 0 0 0 0
 1 vs  1 0 0 0 0 0 0 1 0 0 0 0
 5 vs  0 0 0 0 0 0 0 0 1 0 0 0
 4 vs  0 0 0 0 0 0 0 0 0 1 0 0
 3 vs  0 0 0 0 0 0 0 0 0 0 1 0
 2 vs  0 0 0 0 0 0 0 0 0 0 0 1
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 The program then splits the P-matrix into the Q-, R-, 0-, and I- sub-matrices as 

shown in Figure 13. 

 
Figure 13 - P-Matrix Sub-Matrices 

The model then calculates the fundamental (N-matrix) and absorption (A-matrix) 

matrices as shown in Figures 14 and 15. 

 
Figure 14 - N-Matrix Output 

 

 
Figure 15 - A-Matrix Output 

Now that the Markov chain model had been created, it was time to construct and 

examine some baseline state-based strategic policies. 

N-Matrix  5 vs  2  4 vs  1  3 vs  2  3 vs  1  2 vs  1
 5 vs  2 1 0.3357767 0.2925669 0.1142574 0.1429495
 4 vs  1 0 1 0 0.3402778 0.1433578
 3 vs  2 0 0 1 0 0.3240741
 3 vs  1 0 0 0 1 0.4212963
 2 vs  1 0 0 0 0 1

A-Matrix  1 vs  2  1 vs  1  5 vs  0  4 vs  0  3 vs  0  2 vs  0
 5 vs  2 0.1311585 0.0833872 0.3716564 0.2215194 0.1327162 0.0595623
 4 vs  1 0 0.0836254 0 0.6597222 0.19692 0.0597324
 3 vs  2 0.4483025 0.1890432 0 0 0.2276235 0.1350309
 3 vs  1 0 0.2457562 0 0 0.5787037 0.1755401
 2 vs  1 0 0.5833333 0 0 0 0.4166667
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Strategy Development 

Maliphant and Smith (1990) discussed the following four possible objectives 

which could affect a player’s strategy: 

1. Maximize the probability that the attacker defeats the defender; 

2. Maximize the expected number of pieces in the attacker’s army at the end of 

the turn; 

3. Maximize the expected difference between the two armies at the end of the 

turn; 

4. Minimize the number of expected number of pieces in the defender’s army  at 

the end of the turn. 

With the exception of Maliphant and Smith, the other articles discussed 

previously were only concerned with strategies that maximized the probability of the 

attacker defeating the defender; however, this research project also focused on strategies 

based on maximizing the expected difference between the two armies at the end of the 

turn.  For the purpose of further discussion, the following variables need to be defined: 

1. ∆𝐴′ = Difference of total force strength (global): (𝑁𝐴′ − 𝑁𝐷′ ) 

2. ∆𝐴= Difference of concentrated force strength (operational): (𝑁𝐴 − 𝑁𝐷 ) 

3. 𝛿𝐴 = The actually amount force delta variables are increased based on a 

specific operational outcome: 𝛿𝐴 = �𝐿𝐷 − 𝐿𝐴 � 

4. 𝐸[𝛿𝐴] = The expected amount force delta variables will be increased 

based on a specific operational strategy:  𝐸[𝛿𝐴] = E�𝐿𝐷 − 𝐿𝐴 � 
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5. 𝜀 = The expected amount force delta variables will be increase based on a 

specific tactical strategy: 𝜀 = E�𝐿𝑑 − 𝐿𝑎 � 

These newly defined force delta variables are from the attacker’s perspective as 

opposed to an absolute value.  A positive delta indicates that the attacker’s force strength 

is superior to the defender’s force strength.  It is possible that even though the total force 

delta may be positive, that individual operational deltas may be negative indicating that 

the attacker would be outnumbered in that particular operation. 

The overall objective of the attacker can be summarized by  𝑁𝐴′ = ∆𝐴′ .  Likewise, 

the operational objective of the attacker can be defined as 𝑁𝐴 = ∆𝐴 .  In order to 

accomplish this, the attacker’s optimal strategy would be to maximize both  𝐸[𝛿𝐴] and 𝜀.  

Another way to view 𝐸[𝛿𝐴] would be in terms of a utility function (see Figure 16) 

where the upper branch is the 𝐸[𝛿𝐴] given the attacker wins and the lower branch is 

𝐸[𝛿𝐴] given the defender wins.  Although this project only refers to this function 

based on a risk neutral risk attitude, future studies could expand this model by 

looking at other risk attitudes. 

 
Figure 16 - Utility Function 
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Game Theory 

An interesting way to analyze tactical strategies is to use game theory.  Von 

Neumann and Morgenstern (1972) developed a theory for formulating optimal strategies 

during a two-person zero-sum game.  The theory looks at a two-person zero-game from 

the perspective of two players, a row player and a column player.  The expected reward 

for the row player is equal to the loss of the column player.  The theory proposes that 

each player should choose a strategy that limits potential loss rather than maximize 

potential gain.  In the example from their book (see Table 4), the row player would find 

the minimum payoff from each row and then choose the row that maximized the 

minimum value.   

 
Table 4 - Game Theory Example 

 

In this case, the row player would want to choose the second row, because its 

minimum value is higher than the minimum value in the first row.  Conversely, the 

column player would find the maximum loss from each column and then choose the 

column that minimized the maximum loss value.  In this case, the column player would 

want to choose the first column, because its maximum value is lower than the maximum 

value in the second column.  This example also shows that these players would want to 
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choose the same strategy every time, creating a saddle point where the expected value of 

the game is the same for both players. 

For the purposes of RISK, by calculated the expected losses for both sides (see 

Tables 5 and 6) based on a particular tactical strategy, an expected difference in attrition 

rates for both sides can be compared.   

 
Table 5 - Expected Attacker Losses 

 
Table 6 - Expected Defender Losses 

These attrition rates can be viewed in terms of a baseline equal attrition rate for 

both sides with an additional specified reward.  That reward would be added to the 

defender’s baseline attrition rate.  Conversely, the reward would be subtracted from the 

attacker’s baseline attrition rate.   

𝐸[𝐿𝑎] =
1
2

(𝐿𝑡 − 𝜀) 

𝐸[𝐿𝑑] =
1
2

(𝐿𝑡 + 𝜀) 

 

where  𝐿𝑎 = Loss of Attacker’s armies  
𝐿𝑑 = Loss of Defender’s armies 
𝐿𝑡 = Total losses = 𝐿𝐴 + 𝐿𝐷 
𝜀 = Reward of tactic/strategy 

n a vs n d E[La] | A Wins E[La] | Split E[La] | D Wins E[La]
3 vs 2 0 0.3358 0.5851 0.9209
3 vs 1 0 - 0.3403 0.3403
2 vs 2 0 0.3241 0.8966 1.2207
2 vs 1 0 - 0.4213 0.4213
1 vs 2 0 - 0.7454 0.7454
1 vs 1 0 - 0.5833 0.5833

n a vs n d E[Ld] | A Wins E[Ld] | Split E[Ld] | D Wins E[Ld]
3 vs 2 0.7433 0.3358 0 1.0791
3 vs 1 0.6597 - 0 0.6597
2 vs 2 0.4552 0.3241 0 0.7793
2 vs 1 0.5787 - 0 0.5787
1 vs 2 0.2546 - 0 0.2546
1 vs 1 0.4167 - 0 0.4167
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For a positive reward value, the expected attrition rate for the defender would be 

greater than the expected attrition rate for the attacker.  Solving the above equations for 

epsilon reveals the expected reward equation: 

𝜀 = 𝐸[𝐿𝑑] − 𝐸[𝐿𝑎] 
 
Table 7 lists the expected reward values for each tactical strategy. 

 

 
Table 7 - Expected Reward 

In terms of game theory, the attacker would assume the role of the row player and 

the defender would assume the role of the column player.  Putting the expected reward 

values into the game matrix reveals an optimal strategy, and consequently a saddle point, 

where the attacker should always attack with three armies and the defender should always 

defend with two armies (see Table 8).   

 
Table 8 - RISK Game Theory Matrix 

n a  \ n d 1 2 row 
minima

0 0 0 0

1 -0.1667 -0.4907 -0.4907

2 0.1574 -0.4414 -0.4414

3 0.3194 0.1582 0.1582

column 
maxima

0.3194 0.1582
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By adding the possibility of not attacking, if the attacker does not have the ability 

to attack with three armies, game theory would suggest the optimal strategy is to choose 

not to attack (see Table 9). 

 
Table 9 - RISK Game Theory Matrix (w/o 3 Attackers) 

 

 

  

n a  \ n d 1 2 row 
minima

0 0 0 0

1 -0.1667 -0.4907 -0.4907

2 0.1574 -0.4414 -0.4414

column 
maxima

0.1574 0
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IV.  Analysis 

Markovian Analysis 

The Markov model was designed to build probability and expected value tables 

ranging from 2 – 60 attackers and 1 to 30 defenders.  The model was then run under the 

following configurations: 

1. Tactical strategies employed: 332211, 332210, 332010, 332200, 332000, 330000. 

2. Attacker end state ranging from 1 – 4 remaining armies. 

3. Force ratio ranging from 0%- 150% in 25% increments with a constant decrement 

of minus one army.  With a constant decrement of minus one, the attacker would 

cease engagements if force strength dropped below the specified ratio (allowing 1 

attacker vs 2 defenders) or at or below the specified ratio (not allowing 1 attacker 

vs 2 defenders).  

A comparison of all 168 configurations was conducted.  For every initial state, 

strategy 332211 always yielded the highest probability of winning.  For every state when 

the initial attacker strength was greater than four, or when initial attacker strength was 

three and initial defender strength was one, the highest delta was using strategy 332000.  

In all other situations, the strategies that produced the highest delta resulted in a delta less 

than zero, meaning the attacker was expected to lose more armies during the operation 

than the defender. 

The probability that the attacker wins was then plotted against the expected losses 

delta.  The following graph shows the two extreme points.  Because no other strategy 

produced a higher probability of winning than strategy 332211, and no other strategy 

produced a higher expected losses delta than strategy 332000, a line was drawn between 
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those two points forming a lower boundary (see Figure 17).   Based on the assumption 

that the player is attempting to maximize his or her probability of winning and/or the 

expected losses delta, any strategy that falls below this line would be suboptimal and 

should not be considered. 

 
Figure 17 - Strategy Plot (10 vs 5) 

One method for determining a strategy that balances these two objectives is to find 

the point above the boundary line that is furthest from the boundary.   To accomplish this 

calculation, an equation based on a LaGrange multiplier was utilized.  According to this 

method, the minimum or maximum values of a function  𝐹(𝑥,𝑦) = 𝑓(𝑥,𝑦) + 𝜆𝜙(𝑥,𝑦), 

where λ is the LaGrange multiplier and 𝜙(𝑥,𝑦) equals a constant,  can be solved by 

setting the partial derivatives of F equal to zero.  For convenience, instead of calculating 

the distance from the point to the actual boundary line, an equally appropriate method 

would be to find the distance from the point to a line parallel to the boundary going 
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through the origin.  Therefore, 𝑓(𝑥,𝑦) can be defined as the minimum square distance 

between the strategy point and the line parallel to the boundary line: 

𝑓(𝑥,𝑦) = (𝑥𝑠 − 𝑥)2 + (𝑦𝑠 − 𝑦)2 

where  𝑥𝑠 equals the x-coordinate of the strategy point, 𝑦𝑠 equals the y-coordinate of the 

strategy point, x equals the x-coordinate of closest point on the parallel boundary line, 

and y equals the y-coordinate of the closest point on the parallel boundary line.  

Additionally, 𝜙(𝑥,𝑦)is defined using the equation of the parallel line: 

𝜙(𝑥,𝑦) = 𝑦 −𝑚 ∗ 𝑥 

where m equals the slope of line between strategy point 332211 and strategy point 

332000.  The partial derivatives of 𝐹(𝑥,𝑦) are as follows: 

𝜕𝐹
𝜕𝑥 = 2 ∗ (𝑥 − 𝑥2) − 𝜆 ∗𝑚 = 0 

𝜕𝐹
𝜕𝑦 = 2 ∗ �𝑦 − 𝑦2� + 𝜆 = 0 

Solving these equations and simplifying yields the equation: 

𝑑 =
𝑌𝑠 − 𝑋𝑠 ∗ 𝑚
√𝑚2 + 1

 

The strategy points for all 168 combinations were then compared to find the points that 

were furthest from the boundary line.  Those results are listed in Appendix I. 

Sequentially Dependent Strategy Analysis 

Once the baseline Markovian model had been run and a method for comparing 

strategies was implemented, the next  step was to examine sequentially dependent 

strategies.  Two methods were used.  The first, for small initial force strengths, a 

probability tree could be expanded from the Markov chain into all of its possible 

branches.  Second, for large initial force strengths, a Monte-Carlo simulation was created.  
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The probability tree method provides exact solutions, but the tree size can quickly get too 

large for the computer to manage, and the elemental probabilities become so small, round 

off errors are bound to happen.  The Monte Carlo simulation provides an approximate 

solution with a 95% confidence interval on all batched output. 

For example, Figure 18 shows an expanded probability built from  a Markov 

chain with initial force strengths of NA = 6 and ND = 2. 

 

Figure 18 - Markov-Chain Probability Tree 

Tie

Tie
0.336

0.0000Lose

0.00000.417

0.421
2 vs 1Lose

0.0000
2 vs 2

Lose0.293

0.0000
Win 2 vs 00.417

Lose

0.583
1 vs 1

4 vs 

3 vs 1

Lose

Win

1 vs 1 0.0096Lose

0.0225

Win 2 vs 0 0.00680.417

2 vs 1

4 vs 0 0.07540.660

2 vs 0

3 vs 0

0.583

Win 3 vs 0 0.00000.579

4 vs 0 0.0000
Win

0.372

0.340
4 vs 1 Win

Lose

0.421
Lose

0.579

0.340
3 vs 1Lose

Lose

0.583
1 vs 1

Win 2 vs 10.255

0.745
1 vs 2 0.0000

6 vs 2

5 vs 1

Win 5 vs 0

Win
0.372 6 vs 0

Win
0.336

0.3717

0.22150.660
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Figure 19 is the same tree with the additional cutoff criteria of the attacker ceasing 

engagements if he or she loses three or more armies within the first two engagements. 

 
Figure 19 - Sequentially-Dependent Probability Tree 

One of the interesting points in this scenario is that the attacker chooses to cease 

engagements after two rolls due to initial losses at the NA = 3, ND = 1 state.  In this case 

the attacker would still have a slight advantage over the defender.  Furthermore, the 

attacker has decided to stop at NA= 3, ND = 1 in this case, but would choose to fight at 

that state under a different path. 

Tie

Tie
0.336

0.293
2 vs 2

Lose

Lose

0.745
1 vs 2 0.0638Lose

Win 2 vs 10.255

0.583
1 vs 1 0.0127

1 vs 1 0.0241Lose

Win 2 vs 0 0.00910.417

2 vs 0 0.01720.417

0.421
2 vs 1

0.293
4 vs 2

Lose

Lose 0.583

Win 3 vs 0 0.05690.579

3 vs 1
Win

0.583
1 vs 1 0.0096Lose

Win 4 vs 0 0.10870.372

2 vs 0 0.0068Lose 0.417

6 vs 2
0.421

2 vs 1Lose

0.0225Lose 0.579

0.340
3 vs 1 Win

3 vs 0

0.336 0.660

0.340
4 vs 1 Win

0.0754

0.22150.660

5 vs 1 Win 4 vs 0

5 vs 0

Win 6 vs 0 0.37170.372

Win
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The computer model essentially builds a truncated P-matrix by building the upper 

sub-matrices (the Q-matrix and the R-matrix) without all of the zero entries.  It first sends 

the elements from the initial state to their subsequent state.  Each time the element enters 

a new state, it is split or branched to follow the possible paths leading from that state. 

Each entity keeps track of its current elemental probability, the path it has taken, and its 

next event.  Because the P-matrix created by this model is upper triangular, there is no 

possibility that an entity could back track to a previous state.  Therefore, this method of 

sequentially sending an entity to its next event can be accomplished without looping the 

cycle.   When the entity reaches an absorbing state, either win or lose, the elemental 

probability and path taken are stored.  

The path taken provides the necessary information to determine attacker and 

defender end states and losses as well the number of engagements the battle took.  An 

uppercase “W” represents an attacker win where the defender lost two armies, and a 

lower case “w” represents an attacker win where the defender only lost one army.  

Likewise, an uppercase “L” represents an attacker loss of two armies, and a lowercase 

“l’” represents an attacker loss of only one army. 

The probability tree was also used to validate the Monte-Carlo simulation.  A 

comparison of calculations is displayed in Table 20. 

 
Figure 20 - Probability Tree and Monte-Carlo Comparison 

CI(95% )
P[A Wins]: 0.8020 0.0199 P[A Wins]: 0.8066
P[D Wins]: 0.1980 0.0199 P[D Wins]: 0.1934

E[X] μ CI(95% ) E[X] μ
E[NA] 4.588 E[NA] 4.631
E[LA] 1.412 E[LA] 1.369
E[ND] 0.272 E[ND] 0.279
E[LD] 1.728 E[LD] 1.721
E[δA] 0.316 0.098 E[δA] 0.352

0.075

0.033

Probability TreeMonte Carlo
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The Monte-Carlo simulation generates dice rolls based on a random number 

generator designed by L'ecuyer (1998).  It was originally programmed in C, but was 

translated into Visual Basic for Applications to work in this model.  This generator was 

tested using the KS test for uniformity by generating one million random numbers in 

batches of 100.  Each batch was then rank ordered and the maximum difference between 

the generated continuous probability function and a uniform distribution was calculated.  

If the maximum difference calculated is less than or equal to than the critical value, then 

it the test would fail to reject the null hypothesis that the sample was from a uniform 

distribution (Banks, et al. 2010).  The critical value for α = 0.05 is 0.136 (for n = 100).  

Out of the 10,000 batches of 100 random numbers, the calculated value was greater than 

0.136 only 420 times.  This means that the generator exceeded the critical value 4.2% of 

the time, which makes sense because the critical value was based on the sample not 

exceeding that value more than 5% of the time. 

 The random number generator was also tested by simulating the dice roll for a 

specific tactical strategy one million times per strategy.   All of the confidence intervals 

from those runs included the actual known probabilities of the specific outcomes.   

Figure 21 shows the basic flow of the simulation processing. 

 
Figure 21 - Monte-Carlo Simulation Diagram 

INPUT PROCESS
Set initial conditions no

Select tactical engagement profiles
Choose additional cutoff criteria

Compares dice
Has cutoff OUTPUT

Changes state variable criteria been Batched means
met? Absorbing states

Calculates number of dice for a given 
engagement | current state

yes
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This simulation was validated by comparing the output from several different runs 

without using any additional cutoff criteria against the Markov model.  For example, the 

simulation was run with an initial condition of NA = 10 and ND = 10 and compared to the 

Markov model. Those results are listed in Table 10.  The Monte Carlo simulation output 

was batched and it calculated a 95% confidence interval.   

 
Table 10 - Monte Carlo Validation 

 

Case Studies 

The simulation was then used to analyze four primary cases. 

1. Case 1 

 

The simulation was run several times, each time incrementally increasing the 

probability that the defender would choose to defend with two armies.  The results are 

graphed in figure 22.  As was expected, the defender’s odds of winning battles greatly 

increases as the probability of choosing two armies to defend with approaches 100%. 

 

Markov Chain Monte Carlo
P[Attacker Wins]: 0.4685 0.4669 +/- 0.0030

E[Attacker End State]: 3.35 3.3388 +/- 0.0138
E[Defender End State]: 2.39 2.3829 +/- 0.0168

E[Troop Losses]: 6.65 6.6612 +/- 0.0138
E[Number of Battles]: 7.38 7.3862 +/- 0.0079

    Attacker Defender 
Case 1 Start with: 10 10 

  Fight with: Maximum available                           
(will not allow 1 vs 2) 

Randomly selecting one or 
two armies to defend 

  Win criteria: Defender annihilation Attacker breaks off 
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Figure 22 - Probability of Defender Using Two Armies 

 

 
2. Case 2 

 

Typically when players decide to use additional cutoff criteria, it is because they 

are trying to mitigate excessive army attrition.  In this case, expected losses for both the 

defender and the attacker went down, as did the probability of success.  The player would 

have to decide whether or not the slightly lowered expected losses outweigh the lowered 

probability of success.  These results are listed in Table 11.  Additionally, the strategy 

was graphed and compared to the optimal state-based strategies (see Figure 23). 

Attacker Defender
Case 2 Start with: 10 5

Fight with: Maximum available                           
(will not allow 1 vs 2)

Maximum Available

Fight until: 3 total losses
Win criteria: Defender annihilation Attacker breaks off
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Table 11 - Case 2 Results 

 
Figure 23 - Case 2 Strategy Graph 

3. Case 3 

 

In this case, the expected losses were once again decreased.  When compared to 

the Markov chain analysis, the expected end state for the defender was greatly increased 

(see Table 12); however, the strategy graph (see Figure 24) indicates that this policy is 

suboptimal. 

Markov Chain Monte Carlo
P[Attacker Wins]: 0.8719 0.8263 +/- 0.0045

E[Attacker End State]: 6.12 6.2881 +/- 0.0391
E[Attacker Losses]: 3.88 3.7119 +/- 0.0391

E[Defender End State]: 0.32 0.4960 +/- 0.0183
E[Defender Losses]: 4.68 4.5040 +/- 0.0183

E[D Losses]:E[A Losses]: 1.2056 1.2134
E[Number of Battles]: 4.75 4.5404 +/- 0.0188

Attacker Defender
Case 3 Start with: 10 5

Fight with: Maximum available                           
(will not allow 1 vs 2)

Maximum Available

Fight until: 2 consecutive losses
Win criteria: Defender annihilation Attacker breaks off
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Table 12 - Case 3 Results 

 
Figure 24 – Case 3 Strategy Graph 

4. Case 4 

 

If the attacker chooses to apply this strategy, there will be little chance for 

success.  The probability of winning drops from 87.2% to 36.0%.  Although the attacker 

losses have been minimized, as compared to the other three cases, the expected end state 

Markov Chain Monte Carlo
P[Attacker Wins]: 0.8719 0.7537 +/- 0.0079

E[Attacker End State]: 6.12 6.6371 +/- 0.0309
E[Attacker Losses]: 3.88 3.3629 +/- 0.0309

E[Defender End State]: 0.32 0.8730 +/- 0.0315
E[Defender Losses]: 4.68 4.1270 +/- 0.0315

E[D Losses]:E[A Losses]: 1.2056 1.2272
E[Number of Battles]: 4.75 4.1464 +/- 0.0201

Attacker Defender
Case 4 Start with: 10 5

Fight with: Maximum available                           
(will not allow 1 vs 2)

Maximum Available

Fight until: 3 total armies lost
Win criteria: Defender annihilation Attacker breaks off
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of the defender is almost two full armies, which means this is not a good strategy if the 

attacker wishes to annihilate his opponent.  These results are below: 

 
Table 13 - Case 4 Results 

 
Figure 25 - Case 4 Strategy Graph 

Article Comparison 

The final strategy comparison was not one of the originally proposed cases.  This 

comparison looks at the strategy policy determined to be optimal by Maliphant and Smith 

(1990).  They determined that a policy based on an attacker ceasing engagements if his or 

her force strength dropped below the strength of the defender was optimized when the 

attacker chose to attack with one army even if when the defender used two armies.  

Markov Chain Monte Carlo
P[Attacker Wins]: 0.8719 0.3600 +/- 0.0116

E[Attacker End State]: 6.12 7.4804 +/- 0.0325
E[Attacker Losses]: 3.88 2.5196 +/- 0.0325

E[Defender End State]: 0.32 1.9340 +/- 0.0274
E[Defender Losses]: 4.68 3.0660 +/- 0.0274

E[D Losses]:E[A Losses]: 1.2056 1.2169
E[Number of Battles]: 4.75 2.9946 +/- 0.0132
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However, by looking at this strategy graphically, it is apparent that this is a suboptimal 

policy (see Figure 26). 

 
Figure 26 - Article Strategy Comparison 

Determining Number of Armies 

Once a strategy has been determined optimal by the player, it would also be 

useful to determine the number of required armies to meet an acceptable probability of 

winning.  Using the Markovian model, the minimum number of armies can easily be 

calculated one of two ways. 

The first way is for the user to select the appropriate strategy and initial number of 

defenders.  The program will then provide a graphical solution to the minimum number 

of armies required to meet the specified acceptable probability of winning.  An example 

of this calculation, based on a 332210 strategy and ND = 10, is displayed in Figure 27. 
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Figure 27 - Initial Force Strength Graph 

The second method involves generating a table of all possible initial battle 

conditions, although the model is currently limited to a maximum of NA = 60 to ND = 30.  

The program then pulls the minimum number of armies required to meet or exceed the 

specified probability of winning.  

These values are then entered into a matrix and a regression is run utilizing the 

least squares method, where the estimated coefficients are found by: 

𝑥� = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 

where 𝑥� is the estimated coefficients, 

 A is a matrix predictor variables, 

 b is a matrix of response variables (Strang, 2006). 
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A player could use the resultant coefficients as a rule of thumb to calculate the 

minimum number of armies required.  For instance, using a 332210 strategy and a 

minimum probability of winning of .85, a player would need approximately five more 

armies than his or opponent plus and additional army for every ten defender armies.  This 

calculation is much less than the two to three times as many attackers to defender ratio 

that is commonly used (see Figure 28). 

 
Figure 28 - Least Squares Solution 

 
  

N[D] N[A] Approximation P(Attacker Wins) > 0.85
1 4 Selected Strategy: 332210 2 0 1
2 6 Least-Squares Fit (N[D] > 3): N[A] = 4.8506 + 1.0826 * N[D]
3 8 8.20 Approximate Fit   (N[D] > 3): N[A] = 4.9 + 1.10 * N[D]
4 9 9.30
5 10 10.40
6 11 11.50
7 12 12.60
8 14 13.70
9 15 14.80

10 16 15.90
11 17 17.00
12 18 18.10
13 19 19.20
14 20 20.30
15 21 21.40
16 22 22.50
17 23 23.60
18 24 24.70
19 25 25.80
20 27 26.90
21 28 28.00
22 29 29.10
23 30 30.20
24 31 31.30
25 32 32.40
26 33 33.50
27 34 34.60
28 35 35.70
29 36 36.80
30 37 37.90
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V.  Conclusion 

This research project looked at a broad range of methods to optimize tactical and 

operational strategies.  By using the Markovian model, the quality of the decision is 

independent from the quality of the outcome, thus the policy maker is able to make 

confident decision even if undesirable outcomes occur.  Hopefully, this prevents the 

decision maker from second guessing his or her decisions. 

Additionally, maximizing the expected losses delta may be a superior strategy 

over simply looking at the probability of winning.  In any case, players should consider 

how attrition rates are affected by the chosen strategies. 

Finally, analyzing strategies through mathematical modeling can help teach the 

principles of strategic thinking and decision analysis.  A study like this one would be 

easily accommodated within a class room setting.  For the students with strong 

mathematical backgrounds, diagramming the Markov chain would be an effective 

teaching tool.  However, regardless of the mathematically literacy of the students, a 

model such as the one created during this project would easily aid in classroom 

discussion. 
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Appendix I – Furthest Optimal Strategy from LaGrange Boundary 

 

A \ D 30 29 28 27 26 25 24 23 22 21

60 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1

59 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

58 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1

57 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

56 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

55 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

54 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

53 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

52 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

51 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

50 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

49 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

48 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

47 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

46 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

45 332210 2 0.25 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

44 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

43 332210 2 0.25 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

42 332210 2 0.25 1 332210 2 0.25 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

41 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

40 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

39 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

38 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

37 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

36 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

35 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1

34 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

33 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1

32 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1

31 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1

30 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1

29 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

28 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1

27 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

26 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

25 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

24 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

23 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

22 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

21 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

20 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

19 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

18 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

17 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

16 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

15 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

14 332210 2 0 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

13 332210 2 0 1 332210 2 0 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

12 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

11 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

10 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

9 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1

8 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0.25 1 332210 2 0.25 1

7 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1

6 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1

5 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1

4 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1

3 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2

2 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1
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A \ D 20 19 18 17 16 15 14 13 12 11

60 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

59 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

58 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

57 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

56 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

55 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

54 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

53 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

52 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

51 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

50 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

49 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

48 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

47 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

46 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

45 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

44 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

43 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

42 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

41 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

40 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

39 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

38 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

37 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

36 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

35 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

34 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

33 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

32 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

31 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

30 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1

29 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

28 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1

27 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 

26 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.75 1

25 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332010 2 0 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332010 2 0 1 

24 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.75 1

23 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332010 2 0 1 

22 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1

21 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1

20 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1

19 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1

18 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1

17 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1

16 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1

15 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1

14 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1

13 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0.5 1

12 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0 1 332210 2 0.5 1

11 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.5 1 332210 2 0 1 

10 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0 1 332210 2 0.5 1

9 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0 1 

8 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0 1 332210 2 0 1 

7 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0 1 

6 332210 2 0 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0 1 332210 2 0 1 

5 332210 2 0 1 332210 2 0 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0 1 

4 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0.25 1 332210 2 0 1 332210 2 0 1 

3 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 

2 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 



50 
 

A \ D 10 9 8 7 6 5 4 3 2 1

60 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 1 1 332210 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1

59 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332210 2 0 1 332211 2 0 1 332211 2 0 1 

58 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 1 1 332210 2 0 1 332210 2 1.5 1 332211 2 0 1 332211 2 0 1 

57 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332210 2 0 1 332211 2 0 1 332211 2 0 1 

56 332010 2 0 1 332210 2 0.75 1 332010 2 0.5 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 0 1 332211 2 0 1 

55 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332210 2 0 1 332211 2 1.5 1 332211 2 0 1 

54 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 0 2 332211 2 0 1 

53 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

52 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

51 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

50 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

49 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

48 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

47 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

46 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

45 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

44 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

43 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

42 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

41 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

40 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

39 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

38 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

37 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

36 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

35 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

34 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

33 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 2 

32 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

31 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

30 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

29 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

28 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

27 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

26 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

25 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

24 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

23 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332211 2 1 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

22 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

21 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332211 2 1 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

20 332210 2 0.5 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

19 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332211 2 1 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

18 332210 2 0.5 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

17 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332211 2 1 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

16 332210 2 0.5 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

15 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.75 1 332010 2 0 1 332210 2 0.75 1 332010 2 0 1 332211 2 1 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

14 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.75 1 332210 2 0.75 1 332210 2 0.75 1 332010 2 0 1 332010 2 0 1 332211 2 1.5 1 332211 2 0 1 

13 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.75 1 332210 2 0.5 1 332210 2 0.75 1 332210 2 0.75 1 332211 2 1 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

12 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.75 1 332210 2 0.75 1 332210 2 0.75 1 332010 2 0 1 332211 2 1 1 332211 2 1.5 1 332211 2 0 1 

11 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.75 1 332210 2 0.75 1 332211 2 1 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

10 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.75 1 332210 2 0 1 332210 2 0.75 1 332010 2 0 1 332211 2 1 1 332211 2 1.5 1 332211 2 0 1 

9 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.75 1 332210 2 0.75 1 332211 2 1 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

8 332210 2 0 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0 1 332210 2 0.75 1 332210 2 0 1 332211 2 1 1 332211 2 1.5 1 332211 2 0 1 

7 332210 2 0 1 332210 2 0 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.75 1 332210 2 0.75 1 332211 2 1 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

6 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0.5 1 332210 2 0 1 332210 2 0.75 1 332210 2 0 1 332211 2 1 1 332211 2 1.5 1 332211 2 0 1 

5 332210 2 0 1 332210 2 0 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.5 1 332210 2 0.75 1 332211 2 1 1 332211 2 1.5 1 332210 2 1.5 1 332211 2 0 1 

4 332210 2 0 1 332210 2 0 1 332210 2 0 1 332210 2 0.5 1 332210 2 0 1 332210 2 0.75 1 332210 2 0 1 332211 2 1 1 332211 2 1.5 1 332211 2 0 1 

3 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 2 332211 2 0 1 

2 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 332211 2 0 1 
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Appendix II – Markov Chain VBA Code 

'This subroutine builds a Markov Chain (P-, N-, and A-Matrices): 
Sub Build_Markov_Chain() 
 
    'Declaration of local variables 
    Dim i As Integer                        'counter variable 
    Dim j As Integer                        'counter variable 
    Dim k As Integer                        'counter variable 
    Dim iA As Integer                       'current number of attackers 
    Dim iD As Integer                       'current number of defenders 
     
    Dim iForce_EndState As Integer          'the current attacker's end state based on a ratio 
                                            '...between attacker and defender (minus a const) 
                                             
    Dim iEndState As Integer                'the highest attacker end state based on the 
                                            '...current conditions; maximum of force ratio and 
                                            '...minimum number of required remaining armies 
                                             
    Dim iRow As Integer                     'the row of the associated absorbing state 
    Dim iColumn As Integer                  'the column of all losing absorbing states 
    Dim Header_Matrix() As Integer          'binary array indicating win or loss 
    Dim Column_Matrix() As Integer          'array of attacker and defender end states 
 
    'Initialization of local variables 
    k = 0 
    iA = iAttacker_Initial 
    iD = iDefender_Initial 
    iAbsorb_State_Win = 0 
 
    'Resize the Matrix_Build array to [A x D] dimensions 
    ReDim Matrix_Build(iDefender_Initial + 1, iAttacker_Initial) 
 
    'First entry into the Matrix_Build array is initial attacker vs initial defender 
    Matrix_Build(1, 1) = Format_State(iA, iD) 
 
    'Calculates all possible states based on the associated decrements 
    For i = 1 To iDefender_Initial + 1 
        For j = 1 To iAttacker_Initial 
            If Matrix_Build(i, j) <> "" Then 
                k = k + 1 'counter of total states 
                If i = iDefender_Initial + 1 Then iAbsorb_State_Win = iAbsorb_State_Win + 1 
                iA = Left(Matrix_Build(i, j), 2) 
                iD = Right(Matrix_Build(i, j), 2) 
                 
                'Determines current end state 
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                iForce_EndState = Int(iD * dForce_Ratio) - iForce_Ratio_Decrement 
                iEndState = Ap.Max(iAttacker_EndState, iForce_EndState) 
                 
                'Determines current engagement condition and builds possible states 
                If iA - iEndState >= 2 Then 
                    If iA >= 4 And iD >= 2 Then 
                        Call Build_States(iA, iD, 3, 2) 
                    ElseIf iA >= 4 And iD = 1 Then 
                        Call Build_States(iA, iD, 3, 1) 
                    ElseIf iA = 3 And iD >= 2 Then 
                        Call Build_States(iA, iD, 2, 2) 
                    ElseIf iA = 3 And iD = 1 Then 
                        Call Build_States(iA, iD, 2, 1) 
                    ElseIf iD = 0 Then 
                    Else: MsgBox "ERROR: ln 59" 
                    End If 
                ElseIf iA - iEndState = 1 Then 
                    If iA >= 2 And iD >= 2 Then 
                        Call Build_States(iA, iD, 1, 2) 
                    ElseIf iA >= 2 And iD = 1 Then 
                        Call Build_States(iA, iD, 1, 1) 
                    ElseIf iA = 1 Or iD = 0 Then 
                    Else: MsgBox "ERROR: line 67" 
                    End If 
                End If 
                 
            End If 
         
        Next 
         
    Next 
 
    'Adjusts for initial losses (if specified) 
    For j = 1 To iAttacker_Initial 
        If Matrix_Build(1, j) <> "" Then 
            If Int(Left(Matrix_Build(1, j), 2)) < iInitial_Losses Then 
                Matrix_Build(1, j) = "" 
                k = k - 1 
            End If 
        End If 
    Next 
 
    'Resizes the P-Matrix headers based on total number of states 
    ReDim P_Matrix_Headers(k, 1) 
 
    'Transfer the winning absorption states from the Matrix_Build array to the 
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    '...P_Matrix_Headers array 
    j = 0 
    For i = k - (iAbsorb_State_Win - 1) To k 
        j = j + 1 
        P_Matrix_Headers(i, 1) = Matrix_Build(iDefender_Initial + 1, j) 
    Next 
 
    'Finds the losing absorbing state column in the Matrix_Build array 
    iColumn = iAttacker_Initial 
    iAbsorb_State_Lose = 0 
    Do While iAbsorb_State_Lose = 0 
        For i = 1 To iDefender_Initial 
            If Matrix_Build(i, iColumn) <> "" Then iAbsorb_State_Lose = 1 
        Next 
        If iAbsorb_State_Lose = 0 Then iColumn = iColumn - 1 
    Loop 
 
    'If there is no absorbing state in the absorbing state column for a particular numnber 
    '...defenders, then pull one from an adjacent column and transfer it to the 
    '...P_Matrix_Headers array 
    For iRow = 1 To iDefender_Initial 
        If Matrix_Build(iRow, iColumn) = "" Then 
            iAbsorb_State_Lose = 0 
            j = iColumn 
            Do While iAbsorb_State_Lose = 0 
                j = j - 1 
                If Matrix_Build(iRow, j) <> "" Then 
                    P_Matrix_Headers(k - (iAbsorb_State_Win + iDefender_Initial) + _ 
                        iRow, 1) = Matrix_Build(iRow, j) 
                    Matrix_Build(iRow, j) = "" 
                    iAbsorb_State_Lose = 1 
                End If 
            Loop 
        Else 
            P_Matrix_Headers(k - (iAbsorb_State_Win + iDefender_Initial) + iRow, 1) _ 
                = Matrix_Build(iRow, iColumn) 
            Matrix_Build(iRow, iColumn) = "" 
        End If 
    Next 
                 
    'Transfer all transient states to the P_Matrix_Headers array 
    iRow = 0 
    For j = 1 To iColumn - 1 
        For i = 1 To iDefender_Initial 
            If Matrix_Build(i, j) <> "" Then 
                iRow = iRow + 1 
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                P_Matrix_Headers(iRow, 1) = Matrix_Build(i, j) 
            End If 
        Next 
    Next 
 
    'Calculate number of states (absorption, transient, and total) 
    iAbsorb_State_Lose = iDefender_Initial 
    iAbsorb_State_Total = iAbsorb_State_Win + iAbsorb_State_Lose 
    iTransient_State = k - iAbsorb_State_Total 
    iTotal_State = k 
 
    'Resizes Matrix_Build array to save computer memory 
    ReDim Matrix_Build(1, 1) 
                                    
    'Resizes P-, Q- , R- and N- matrices based on the number of states 
    ReDim P_Matrix(iTotal_State, iTotal_State) 
    ReDim Q_Matrix(iTransient_State, iTransient_State) 
    ReDim R_Matrix(iTransient_State, iAbsorb_State_Total) 
    ReDim N_Matrix(iTransient_State, iTransient_State) 
 
    'Determines current engagement condition and calculates transition probabilities; 
    '...builds P-, Q-, and R- matrices 
    For i = 1 To iTransient_State 
        iA = Left(P_Matrix_Headers(i, 1), 2) 
        iD = Right(P_Matrix_Headers(i, 1), 2) 
        iForce_EndState = Int(iD * dForce_Ratio) - iForce_Ratio_Decrement 
        iEndState = Ap.Max(iAttacker_EndState, iForce_EndState) 
        If iA - iEndState >= 2 Then     'Attacker can use more than one army 
            If iA >= 4 And iD >= 2 Then     '3 vs 2 scenario 
                Call Markov_Prob(iA, iD, i, 3, 2) 
            ElseIf iA >= 4 And iD = 1 Then  '3 vs 1 scenario 
                Call Markov_Prob(iA, iD, i, 3, 1) 
            ElseIf iA = 3 And iD >= 2 Then  '2 vs 2 scenario 
                Call Markov_Prob(iA, iD, i, 2, 2) 
            ElseIf iA = 3 And iD = 1 Then   '2 vs 1 scenario 
                Call Markov_Prob(iA, iD, i, 2, 1) 
            End If 
        ElseIf iA - iEndState = 1 Then  'Attacker can only lose one army 
         
            'If defender chooses to defend with only army (even though more may be 
            '...available and the attacker has chosen a dependent strategy policy, 
            '...then the attacker can attack with three armies and still only 
            '...risk losing one army 
            If iA >= 3 And iD >= 2 Then 
                If iDefender_Strategy(2) = 1 And blnIndependent_Strategy = False Then 
                    Call Markov_Prob(iA, iD, i, 3, 1) 
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                Else: Call Markov_Prob(iA, iD, i, 1, 2) 'otherwise, 1 vs 2 scenario 
                End If 
                 
            ElseIf iA >= 4 And iD = 1 Then  '3 vs 1 scenario 
                Call Markov_Prob(iA, iD, i, 3, 1) 
             
            'If defender chooses to defend with only army (even though more may be 
            '...available and the attacker has chosen a dependent strategy policy, 
            '...then the attacker can attack with two armies and still only 
            '...risk losing one army 
            ElseIf iA = 3 And iD >= 2 Then 
                If iDefender_Strategy(2) = 1 And blnIndependent_Strategy = False Then 
                    Call Markov_Prob(iA, iD, i, 2, 1) 
                Else: Call Markov_Prob(iA, iD, i, 1, 2) 'otherwise, 1 vs 2 scenario 
                End If 
                 
            ElseIf iA = 3 And iD = 1 Then   '2 vs 1 scenario 
                Call Markov_Prob(iA, iD, i, 2, 1) 
            ElseIf iA = 2 And iD >= 2 Then  '1 vs 2 scenario 
                Call Markov_Prob(iA, iD, i, 1, 2) 
            ElseIf iA = 2 And iD = 1 Then   '1 vs 1 scenario 
                Call Markov_Prob(iA, iD, i, 1, 1) 
            End If 
        End If 
    Next 
 
    'Fills in the 0- and I- submatrix portions of the P-Matrix 
    For i = iTransient_State + 1 To iTotal_State 
        For j = 1 To iTotal_State 
            If i = j Then 
                P_Matrix(i, j) = 1 
            Else: P_Matrix(i, j) = 0 
            End If 
        Next 
    Next 
 
    'N-Matrix at this point = I-Q; to complete the calculation N is inverted 
    N_Matrix = Ap.MInverse(N_Matrix) 
     
    'Calculates absorption matrix 
    A_Matrix = Ap.MMult(N_Matrix, R_Matrix) 
 
    'Creates a binary win-loss array 
    ReDim Header_Matrix(iAbsorb_State_Total, 2) 
    For i = 1 To iAbsorb_State_Total 
        If Right(P_Matrix_Headers(iTransient_State + i, 1), 2) = 0 Then 
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            Header_Matrix(i, 1) = 1 
            Header_Matrix(i, 2) = 0 
        Else 
            Header_Matrix(i, 1) = 0 
            Header_Matrix(i, 2) = 1 
        End If 
    Next 
 
    'Calculates the probability of winning/losing for a given initial condition 
    Win_Lose_Matrix = Ap.MMult(A_Matrix, Header_Matrix) 
 
    'Creates an array of the attacker and defender end states 
    ReDim Column_Matrix(iAbsorb_State_Total, 2) 
    For i = 1 To iAbsorb_State_Total 
        Column_Matrix(i, 1) = Left(P_Matrix_Headers(iTransient_State + i, 1), 2) 
        Column_Matrix(i, 2) = Right(P_Matrix_Headers(iTransient_State + i, 1), 2) 
    Next 
     
    'Calculates expected end states 
    Exp_End_State_Matrix = Ap.MMult(A_Matrix, Column_Matrix) 
 
    'Creates a matrix with expected losses values are squared (will be used to find 
variance) 
    ReDim Preserve Column_Matrix(iAbsorb_State_Total, 3) 
    For i = 1 To iAbsorb_State_Total 
        Column_Matrix(i, 3) = ((iDefender_Initial - Column_Matrix(i, 2)) - _ 
            (iAttacker_Initial - Column_Matrix(i, 1))) ^ 2 
        Column_Matrix(i, 1) = (iAttacker_Initial - Column_Matrix(i, 1)) ^ 2 
        Column_Matrix(i, 2) = (iDefender_Initial - Column_Matrix(i, 2)) ^ 2 
    Next 
     
    'Caluclates the 2nd moment of the expected losses (only for the initial set of 
conditions) 
    Exp_Losses_2ndMoment = Ap.MMult(Ap.Index(A_Matrix, 1, 0), Column_Matrix) 
 
    'Resize expected losses matrix 
    ReDim Exp_Losses_Matrix(iTransient_State, 3) 
 
    'Calculates expected losses matrix 
    If iTransient_State = 0 Then 
        MsgBox "There are no transient states.  Please check initial conditions" 
    ElseIf iTransient_State = 1 Then 
        Exp_Losses_Matrix(1, 1) = Left(P_Matrix_Headers(1, 1), 2) - 
Exp_End_State_Matrix(1) 
        Exp_Losses_Matrix(1, 2) = Right(P_Matrix_Headers(1, 1), 2) - 
Exp_End_State_Matrix(2) 
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        Exp_Losses_Matrix(1, 3) = Exp_Losses_Matrix(1, 2) - Exp_Losses_Matrix(1, 1) 
    Else 
        For i = 1 To iTransient_State 
            Exp_Losses_Matrix(i, 1) = Left(P_Matrix_Headers(i, 1), 2) - _ 
                Exp_End_State_Matrix(i, 1) 
            Exp_Losses_Matrix(i, 2) = Right(P_Matrix_Headers(i, 1), 2) - _ 
                Exp_End_State_Matrix(i, 2) 
            Exp_Losses_Matrix(i, 3) = Exp_Losses_Matrix(i, 2) - Exp_Losses_Matrix(i, 1) 
        Next 
    End If 
 
    'Calculates conditional expected losses (E[Losses] | A Wins or D Wins) 
    ReDim Column_Matrix(iAbsorb_State_Total, 2) 
    For i = 1 To iAbsorb_State_Total 
        Column_Matrix(i, 1) = ((iDefender_Initial - _ 
            Right(P_Matrix_Headers(iTransient_State + i, 1), 2)) - _ 
            (iAttacker_Initial - Left(P_Matrix_Headers(iTransient_State + i, 1), 2))) * _ 
            Header_Matrix(i, 1) 
        Column_Matrix(i, 2) = ((iDefender_Initial - _ 
            Right(P_Matrix_Headers(iTransient_State + i, 1), 2)) - _ 
            (iAttacker_Initial - Left(P_Matrix_Headers(iTransient_State + i, 1), 2))) * _ 
            Header_Matrix(i, 2) 
    Next 
    Exp_Conditional_Delta = Ap.MMult(Ap.Index(A_Matrix, 1, 0), Column_Matrix) 
     
End Sub 
'***********************************************************************
************************ 
'This subroutine calculates the subsequent possible states based on a current state: 
Sub Build_States(iA As Integer, iD As Integer, i As Integer, j As Integer) 
 
    'Declaration of local variables 
    Dim k As Integer                        'counter variable 
    Dim iA_Next As Integer                  'next attacker state 
    Dim iD_Next As Integer                  'next defender state 
 
    'Builds the Matrix_Build array 
    For k = 0 To iDecrement(i, j) 
        iA_Next = iA - k 
        iD_Next = iD + k - iDecrement(i, j) 
        Matrix_Build(iDefender_Initial - iD_Next + 1, iAttacker_Initial - iA_Next + 1) = _ 
            Format_State(iA_Next, iD_Next) 
    Next 
 
End Sub 
'*********************************************************************** 
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'This subroutine enters the transtition probabilities into the P-, Q-, R-, and (I-Q) matrices: 
Sub Markov_Prob(iA As Integer, iD As Integer, i As Integer, X As Integer, Y As Integer) 
 
    'Declaration of local counter variable 
    Dim j As Integer 
 
    If iDecrement(X, Y) = 2 Then    'total attrition = 2 armies (i.e. ties are possible) 
        For j = 1 To iTotal_State 
             
            'Attacker wins: defender loses two armies 
            If iA = Left(P_Matrix_Headers(j, 1), 2) _ 
              And iD = Right(P_Matrix_Headers(j, 1), 2) + 2 Then 
                P_Matrix(i, j) = Prob_Win(X, Y) 
                If j <= iTransient_State Then 
                    Q_Matrix(i, j) = Prob_Win(X, Y) 
                    N_Matrix(i, j) = 0 - Prob_Win(X, Y) 
                Else: R_Matrix(i, j - iTransient_State) = Prob_Win(X, Y) 
                End If 
                 
            'Tie: both sides lose one army 
            ElseIf iA = Left(P_Matrix_Headers(j, 1), 2) + 1 _ 
              And iD = Right(P_Matrix_Headers(j, 1), 2) + 1 Then 
                P_Matrix(i, j) = Prob_Tie(X, Y) 
                If j <= iTransient_State Then 
                    Q_Matrix(i, j) = Prob_Tie(X, Y) 
                    N_Matrix(i, j) = 0 - Prob_Tie(X, Y) 
                Else: R_Matrix(i, j - iTransient_State) = Prob_Tie(X, Y) 
                End If 
                 
            'Defender wins: attacker loses two armies 
            ElseIf iA = Left(P_Matrix_Headers(j, 1), 2) + 2 _ 
              And iD = Right(P_Matrix_Headers(j, 1), 2) Then 
                P_Matrix(i, j) = Prob_Lose(X, Y) 
                If j <= iTransient_State Then 
                    Q_Matrix(i, j) = Prob_Lose(X, Y) 
                    N_Matrix(i, j) = 0 - Prob_Lose(X, Y) 
                Else: R_Matrix(i, j - iTransient_State) = Prob_Lose(X, Y) 
                End If 
             
            'Otherwise, the state is not reachable from the current state; 
            Else 
                P_Matrix(i, j) = 0 
                If j <= iTransient_State Then 
                    Q_Matrix(i, j) = 0 
                    If i = j Then 
                        N_Matrix(i, j) = 1 
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                    Else: N_Matrix(i, j) = 0 
                    End If 
                Else: R_Matrix(i, j - iTransient_State) = 0 
                End If 
            End If 
        Next 
         
    ElseIf iDecrement(X, Y) = 1 Then    'total attrition = 1 army (i.e. ties are not possible) 
        For j = 1 To iTotal_State 
             
            'Attacker wins: defender loses one army 
            If iA = Left(P_Matrix_Headers(j, 1), 2) _ 
              And iD = Right(P_Matrix_Headers(j, 1), 2) + 1 Then 
                P_Matrix(i, j) = Prob_Win(X, Y) 
                If j <= iTransient_State Then 
                    Q_Matrix(i, j) = Prob_Win(X, Y) 
                    N_Matrix(i, j) = 0 - Prob_Win(X, Y) 
                Else: R_Matrix(i, j - iTransient_State) = Prob_Win(X, Y) 
                End If 
                 
            'Defender wins: attacker loses one army 
            ElseIf iA = Left(P_Matrix_Headers(j, 1), 2) + 1 _ 
              And iD = Right(P_Matrix_Headers(j, 1), 2) Then 
                P_Matrix(i, j) = Prob_Lose(X, Y) 
                If j <= iTransient_State Then 
                    Q_Matrix(i, j) = Prob_Lose(X, Y) 
                    N_Matrix(i, j) = 0 - Prob_Lose(X, Y) 
                Else: R_Matrix(i, j - iTransient_State) = Prob_Lose(X, Y) 
                End If 
                 
            'Otherwise, the state is not reachable from the current state; 
            '...fill in the element with zero 
            Else 
                P_Matrix(i, j) = 0 
                If j <= iTransient_State Then 
                    Q_Matrix(i, j) = 0 
                    If i = j Then 
                        N_Matrix(i, j) = 1 
                    Else: N_Matrix(i, j) = 0 
                    End If 
                Else: R_Matrix(i, j - iTransient_State) = 0 
                End If 
            End IF 
        Next   
    End IF                    
End Sub 
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Appendix III – Monte Carlo Simulation VBA Code 
'This subroutine runs a discrete event simulation using Monte-Carlo methods for 
generating the state-change events (i.e. rolling the dice): 
Sub Run_Monte_Carlo() 
    'Seeds the MRG32k5a random number generator 
    Call RNG_Seed 
    'Declaration of local variables 
    Dim i As Integer                        'counter variable 
    Dim j As Integer                        'counter variable 
    Dim k As Integer                        'counter variable 
    Dim N As Integer                        'counter variable (number of engagements) 
    Dim iA As Integer                       'current number of attackers 
    Dim iD As Integer                       'current number of defenders 
     
    Dim iForce_EndState As Integer          'the current attacker's end state based on a ratio 
                                            '...between attacker and defender (minus a const) 
     
    Dim iEndState As Integer                'the highest attacker end state based on the 
                                            '...current conditions; maximum of force ratio and 
                                            '...minimum number of required remaining armies 
                                             
    Dim datTime As Date                     'timer variable; used to control animation speed 
     
    Dim blnContinue As Boolean              'logic variable; used to determine if absorption 
                                            '...state is reached 
 
    Dim iState() As Variant                 'tracks current state of the battle 
 
    Dim Rep_Stats() As Variant              'records statistics for current batch 
    Dim Batch_Stats() As Variant            'records summary statistics for all batches 
    Dim Absorb_States() As Double           'tallies absorbing tracks 
    Dim strA As String                      'outputs the number of attacker armies (animation) 
    Dim strD As String                      'outputs the number of defender armies (animation) 
    Dim response As String                  'determines if simulation should continue running 
 
    'Ensures "Sim Animation" worksheet is selected and scaled 
    Application.ScreenUpdating = False 
    Call View_Sheet("Sim Animation", True) 
    ActiveWindow.WindowState = xlMaximized 
    Range("A1:I10").Select 
    ActiveWindow.Zoom = True 
 
    'Clears contents and selected formatting 
    Call Animate_Clear 
     
    'Ensures "Data Sheet" is accessible for updating graph data (animation) 
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    Sheets("Data Sheet").Visible = True 
 
    'Updates screen with empty battle field 
    Application.ScreenUpdating = True 
    Application.ScreenUpdating = False 
     
    'System delay 
    datTime = Timer + 1 
    Do 
        DoEvents 
    Loop Until Timer >= datTime 
 
    'Initializes the force strength for both sides (animation) 
    '...Note: each character "x" represents one army 
    For i = 1 To iAttacker_Initial 
        strA = strA & "x" 
    Next 
    For i = 1 To iDefender_Initial 
        strD = strD & "x" 
    Next 
 
    'Resizes statistic arrays for the selected number of replications and batches 
    ReDim Batch_Stats(iBatch, 8) 
    ReDim Rep_Stats(iReplications, 8) 
     
    'Resizes the absorption state array for the initial conditions 
    ReDim Absorb_States(iAttacker_Initial, iDefender_Initial + 1) 
 
    '-------- BATCH -------- 
    For j = 1 To iBatch 
 
        '-------- REPLICATION -------- 
        For i = 1 To iReplications 
        
        'Initializes the force strength for both sides 
        iA = iAttacker_Initial 
        iD = iDefender_Initial 
 
        'The battle will continue as long as blnContinue = True 
        blnContinue = True 
     
        'Initializes additional cutoff criteria counters 
        iCum_Loss(1) = 0 
        iCon_Loss(1) = 0 
        iCum_Armies(1) = 0 
        iCon_Armies(1) = 0 
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        'Initializes the number of engagements counter 
        N = 0 
         
        'Update replication/batch counter 
        Range("B2") = "Run: " & ((j - 1) * iReplications) + i & "/" & _ 
            (iReplications * iBatch) 
        Range("B2").Select 
        Application.ScreenUpdating = True 
        Application.ScreenUpdating = False 
         
        'Initializes battle animation if animation is desired 
        If Range("rngAnimate") = True Then 
            blnAnimate = True 
            Call Clear_Shapes("Sim Animation") 
            Range("B4") = strA 
            Range("H4") = strD 
            Range("E2") = iAttacker_Initial & " Attackers vs " & _ 
                iDefender_Initial & " Defenders" 
            Range("E2").Select 
            Application.ScreenUpdating = True 
            Application.ScreenUpdating = False 
            datTime = Timer + 1 + (Speed / 10) 
            Do 
                DoEvents 
            Loop Until Timer >= datTime 
           Range("E2").ClearContents 
            
        'Clears screen if animation is not desired 
        Else 
            blnAnimate = False 
            If Range("B4") <> "" Then Call Animate_Clear 
        End If 
 
        'Continue battle until cutoff criteria is achieved 
        Do While blnContinue = True 
 
            'If user terminates Sim_Run_Menu, then checks to see if user wants to stop the 
sim 
            If blnRunSim = False Then 
                response = MsgBox("Do you want to stop the simulation?", vbYesNo, 
"Confirm") 
                If response = vbYes Then 
                    Call Animate_Clear 
                    Exit Sub 
                Else 
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                    blnRunSim = True 
                    Sim_Run_Menu.Show 
                End If 
            End If 
 
             
            If blnAnimate = True Then 
                Call Clear_Shapes("Sim Animation") 
                Range("B4") = Left(strA, iA) 
                Range("H4") = Left(strA, iD) 
            End If 
 
            iForce_EndState = Int(iD * dForce_Ratio) - iForce_Ratio_Decrement 
            iEndState = Ap.Max(iAttacker_EndState, iForce_EndState) 
            N = N + 1 
            If iA - iEndState >= 2 Then 
                If iA >= 4 And iD >= 2 Then 
                    If iAttacker_Strategy(3, 2) = 0 Then 
                        blnContinue = False 
                    Else: iState = Dice_Roll(iA, iD, 3, 2) 
                    End If 
                ElseIf iA >= 4 And iD = 1 Then 
                    If iAttacker_Strategy(3, 1) = 0 Then 
                        blnContinue = False 
                    Else: iState = Dice_Roll(iA, iD, 3, 1) 
                    End If 
                ElseIf iA = 3 And iD >= 2 Then 
                    If iAttacker_Strategy(2, 2) = 0 Then 
                        blnContinue = False 
                    Else: iState = Dice_Roll(iA, iD, 2, 2) 
                    End If 
                ElseIf iA = 3 And iD = 1 Then 
                    If iAttacker_Strategy(2, 1) = 0 Then 
                        blnContinue = False 
                    Else: iState = Dice_Roll(iA, iD, 2, 1) 
                    End If 
                End If 
            ElseIf iA - iEndState = 1 Then 
                If iA >= 2 And iD >= 2 Then 
                    If iAttacker_Strategy(1, 2) = 0 Then 
                        blnContinue = False 
                    Else: iState = Dice_Roll(iA, iD, 1, 2) 
                    End If 
                ElseIf iA >= 4 And iD = 1 Then 
                    If iAttacker_Strategy(3, 1) = 0 Then 
                        blnContinue = False 
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                    Else: iState = Dice_Roll(iA, iD, 3, 1) 
                    End If 
                ElseIf iA = 3 And iD = 1 Then 
                    If iAttacker_Strategy(2, 1) = 0 Then 
                        blnContinue = False 
                    Else: iState = Dice_Roll(iA, iD, 2, 1) 
                    End If 
                ElseIf iA = 2 And iD = 1 Then 
                    If iAttacker_Strategy(1, 1) = 0 Then 
                        blnContinue = False 
                    Else: iState = Dice_Roll(iA, iD, 1, 1) 
                    End If 
                End If 
            Else 
                N = N - 1 
                blnContinue = False 
            End If 
 
 
            iA = iState(1) 
            iD = iState(2) 
            If iState(3) = 0 Then 
                iCon_Loss(1) = 0 
            Else: iCon_Loss(1) = iCon_Loss(1) + iState(3) 
            End If 
            iCum_Loss(1) = iCum_Loss(1) + iState(3) 
            If iState(4) = 0 Then 
                iCon_Armies(1) = 0 
            Else: iCon_Armies(1) = iCon_Armies(1) + iState(4) 
            End If 
            iCum_Armies(1) = iCum_Armies(1) + iState(4) 
     
            If iA <= iEndState Or iD = 0 Then blnContinue = False 
            If N <= iCum_Loss(3) And iCum_Loss(1) >= iCum_Loss(2) Then blnContinue = 
False 
            If N <= iCon_Loss(3) And iCon_Loss(1) >= iCon_Loss(2) Then blnContinue = 
False 
            If N <= iCum_Armies(3) And iCum_Armies(1) >= iCum_Armies(2) Then 
blnContinue = False 
            If N <= iCon_Armies(3) And iCon_Armies(1) >= iCon_Armies(2) Then 
blnContinue = False 
     
            DoEvents 
        Loop 
 
        If iD = 0 Then 
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            Rep_Stats(i, 1) = 1 
            Rep_Stats(i, 3) = 0 
            Rep_Stats(i, 7) = (iDefender_Initial - iD) - (iAttacker_Initial - iA) 
            Rep_Stats(i, 8) = 0 
            If blnAnimate = True Then Call Animate_Victory("ATTACKER WINS") 
        Else 
            Rep_Stats(i, 1) = 0 
            Rep_Stats(i, 3) = 1 
            Rep_Stats(i, 7) = 0 
            Rep_Stats(i, 8) = (iDefender_Initial - iD) - (iAttacker_Initial - iA) 
            If blnAnimate = True Then Call Animate_Victory("DEFENDER WINS") 
        End If 
 
        Rep_Stats(i, 2) = iA 
    Rep_Stats(i, 4) = iD 
    Rep_Stats(i, 5) = (iDefender_Initial - iD) - (iAttacker_Initial - iA) 
    Rep_Stats(i, 6) = N 
    Absorb_States(iA, iD + 1) = Absorb_States(iA, iD + 1) + 1 
 
    Next 
     
    For k = 1 To 8 
    Batch_Stats(j, k) = Ap.Average(Ap.Index(Rep_Stats, 0, k)) 
    Next 
 
Next 
 
Sheets("Sim Results").Visible = True 
Sheets("Sim Results").Select 
ActiveSheet.Unprotect 
 
Range("M7").Select 
Range(Selection, Selection.End(xlToRight)).Select 
Range(Selection, Selection.End(xlDown)).Select 
Selection.ClearContents 
 
'Range("A28:J500").Clear 
 
For k = 1 To 6 
    Cells(3, 13 + k) = Ap.Sum(Ap.Index(Batch_Stats, 0, k)) / iBatch 
    Cells(4, 13 + k) = Ap.StDev_S(Ap.Index(Batch_Stats, 0, k)) 
    Cells(5, 13 + k) = Ap.Confidence_T(0.05, Cells(4, 13 + k), iBatch) 
Next 
 
'Fill in summary table 
Range("F3") = Range("N3") 
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Range("F4") = Range("P3") 
Range("F7") = Range("O3") 
Range("F8") = iAttacker_Initial - Range("F7") 
Range("F9") = Range("Q3") 
Range("F10") = iDefender_Initial - Range("F9") 
Range("F11") = Range("R3") 
Range("F16") = Range("N3") 
Range("F21") = Range("P3") 
Range("G3") = Range("N5") 
Range("G4") = Range("P5") 
Range("G7") = Range("O5") 
Range("G9") = Range("Q5") 
Range("G11") = Range("R5") 
 
ActiveSheet.Shapes.Range(Array("Oval 24")).Select 
Selection.ShapeRange(1).TextFrame2.TextRange.Characters.Text = _ 
    Format(Ap.Sum(Ap.Index(Batch_Stats, 0, 7)) / Ap.Sum(Ap.Index(Batch_Stats, 0, 1)), 
"0.000") 
ActiveSheet.Shapes.Range(Array("Oval 23")).Select 
Selection.ShapeRange(1).TextFrame2.TextRange.Characters.Text = _ 
    Format(Ap.Sum(Ap.Index(Batch_Stats, 0, 8)) / Ap.Sum(Ap.Index(Batch_Stats, 0, 3)), 
"0.000") 
ActiveSheet.Shapes.Range(Array("Oval 17")).Select 
Selection.ShapeRange(1).TextFrame2.TextRange.Characters.Text = _ 
    Format(Ap.Sum(Ap.Index(Batch_Stats, 0, 5)) / iBatch, "0.000") 
 
 
For i = 1 To iBatch 
    Cells(6 + i, 13) = i 
Next 
 
Range(Cells(7, 14), Cells(6 + iBatch, 19)) = Batch_Stats 
 
Sheets("Strategy Graph").Visible = True 
Sheets("Strategy Graph").Select 
ActiveSheet.Unprotect 
 
For i = 3 To 4 
    Cells(i, 11) = Sheets("Sim Results").Cells(i, 6) 
Next 
 
For i = 7 To 11 
    Cells(i, 11) = Sheets("Sim Results").Cells(i, 6) 
Next 
 
Sheets("A-Matrix").Visible = True 



67 

Sheets("A-Matrix").Select 
ActiveSheet.Unprotect 
 
Range("B2:B3").Select 
Range(Selection, Selection.End(xlToRight)).Select 
Selection.Copy 
 
Sheets("Sim Results").Select 
Range("A28").Select 
Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:= _ 
    False, Transpose:=True 
Range("B28").Select 
Range(Selection, Selection.End(xlDown)).NumberFormat = "0.0000" 
Call Format_Borders(Range("A28"), 3) 
Range("A28").Select 
Range(Selection, Selection.End(xlDown)).Select 
Range(Selection, Selection.End(xlToRight)).Select 
Selection.Copy 
Range("E28").Select 
ActiveSheet.Paste 
Range("I28").Select 
ActiveSheet.Paste 
Range("F28").Select 
Range(Selection, Selection.End(xlDown)).ClearContents 
Range("J28").Select 
Range(Selection, Selection.End(xlDown)).ClearContents 
 
i = 0 
Do While Range("E28").Offset(i, 0) <> "" 
    iA = Left(Range("E28").Offset(i, 0), 2) 
    iD = Right(Range("E28").Offset(i, 0), 2) 
    Range("E28").Offset(i, 1) = Absorb_States(iA, iD + 1) / (iBatch * iReplications) 
    Range("E28").Offset(i, 1).NumberFormat = "0.0000" 
    Absorb_States(iA, iD + 1) = 0 
    i = i + 1 
Loop 
     
    For iA = 1 To iAttacker_Initial 
        For iD = 0 To iDefender_Initial 
            If Absorb_States(iA, iD + 1) > 0 Then 
                Range("E28").Offset(i, 0) = iA & " vs " & iD 
                Range("E28").Offset(i, 1) = Absorb_States(iA, iD + 1) / _ 
                    (iBatch * iReplications) 
                Range("E28").Offset(i, 1).NumberFormat = "0.0000" 
                Call Format_Borders(Range("E28").Offset(i, 0), 2) 
                Call Format_Lose_States(Range("E28").Offset(i, 0)) 
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                i = i + 1 
            End If 
        Next 
    Next 
    
   
Call Animate_Clear 
   
Call View_Sheet("Sim Results", True) 
Range("B2").Select 
Sim_Run_Menu.Hide 
Application.ScreenUpdating = True 
 
MsgBox "Simulation completed " & iReplications * iBatch & " total runs.", , "Finished" 
 
 
For iA = 1 To iAttacker_Initial 
    For iD = 1 To iDefender_Initial + 1 
        If Absorb_States(iA, iD) <> 0 Then 
            Cells(9, 11 + k) = iA & " vs " & iD - 1 
            Cells(10, 11 + k) = Absorb_States(iA, iD) / (iBatch * iReplications) 
            k = k + 1 
        End If 
    Next 
Next 
 
End Sub 
Function Dice_Roll(iA As Variant, iD As Variant, X As Integer, Y As Integer) As 
Variant 
Dim j As Integer 
Dim iAttacker_Dice(3) As Integer, iDefender_Dice(3) As Integer 
Dim iAttacker_Max(2) As Integer, iDefender_Max(2) As Integer 
Dim iDefender_Strategy_Sim As Integer 
Dim animation As Boolean 
Dim datTime As Date 
Dim varAnimate(3, 2) As Variant 
If Y = 2 Then 
    If Rnd() < cProb2 Then 
        iDefender_Strategy_Sim = 2 
    Else: iDefender_Strategy_Sim = 1 
    End If 
Else: iDefender_Strategy_Sim = 1 
End If 
 
If blnAnimate = True Then 
    Call Animate_Blue_Tanks(iAttacker_Strategy(X, Y)) 
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    Call Animate_Red_Tanks(iDefender_Strategy_Sim) 
    Range("B2").Select 
    Application.ScreenUpdating = True 
    Application.ScreenUpdating = False 
    datTime = Timer + 0.5 + (Speed / 10) 
    Do 
        DoEvents 
    Loop Until Timer >= datTime 
End If 
 
For j = 1 To 3 
    If j <= iAttacker_Strategy(X, Y) Then 
        iAttacker_Dice(j) = Int(MRG32k5a * 6 + 1) 
        If blnAnimate = True Then Call Animate_Blue_Roll(iAttacker_Dice(j), j) 
    Else: iAttacker_Dice(j) = 0 
    End If 
    If j <= iDefender_Strategy_Sim Then 
        iDefender_Dice(j) = Int(MRG32k5a * 6 + 1) 
        If blnAnimate = True Then Call Animate_Red_Roll(iDefender_Dice(j), j) 
    Else: iDefender_Dice(j) = 0 
    End If 
Next 
 
If blnAnimate = True Then 
    Range("B2").Select 
    Application.ScreenUpdating = True 
    Application.ScreenUpdating = False 
    datTime = Timer + 0.5 + (Speed / 10) 
    Do 
        DoEvents 
    Loop Until Timer >= datTime 
End If 
 
iAttacker_Max(1) = Ap.Max(iAttacker_Dice) 
iAttacker_Max(2) = Ap.Median(iAttacker_Dice) 
iDefender_Max(1) = Ap.Max(iDefender_Dice) 
iDefender_Max(2) = Ap.Median(iDefender_Dice) 
 
If iAttacker_Strategy(X, Y) >= 2 And iDefender_Strategy_Sim = 2 Then 
    If iAttacker_Max(1) > iDefender_Max(1) And iAttacker_Max(2) > iDefender_Max(2) 
Then 
        Dice_Roll = Array(iA, iD - 2, 0, 0) 
        varAnimate(1, 1) = "W" 
        varAnimate(1, 2) = "W" 
    ElseIf iAttacker_Max(1) <= iDefender_Max(1) And iAttacker_Max(2) <= 
iDefender_Max(2) Then 
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        Dice_Roll = Array(iA - 2, iD, 1, 2) 
        varAnimate(1, 1) = "L" 
        varAnimate(1, 2) = "L" 
    Else 
        Dice_Roll = Array(iA - 1, iD - 1, 0, 1) 
        If iAttacker_Max(1) > iDefender_Max(1) Then 
            varAnimate(1, 1) = "W" 
            varAnimate(1, 2) = "L" 
        Else 
            varAnimate(1, 1) = "L" 
            varAnimate(1, 2) = "W" 
        End If 
    End If 
Else 
    If iAttacker_Max(1) > iDefender_Max(1) Then 
        Dice_Roll = Array(iA, iD - 1, 0, 0) 
        varAnimate(1, 1) = "W" 
        varAnimate(1, 2) = 0 
    ElseIf iAttacker_Max(1) <= iDefender_Max(1) Then 
        If cProb2 = 0 Then 
            Dice_Roll = Array(iA - 1, iD, 1, 1) 
        Else: Dice_Roll = Array(iA - 1, iD, dbl_W_w_Ratio, 1) 
        End If 
        varAnimate(1, 1) = "L" 
        varAnimate(1, 2) = 0 
    Else: MsgBox "ERROR" 
    End If 
End If 
End Function 
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Appendix IV – Random Number Generator 
'*********************************************************************** 
'The following are public constants that are used when MRG32k5a is the random number 
generator: 
Const norm = 2.32831633968346E-10 
Const m1 = 4294949027# 
Const m2 = 4294934327# 
Const a12 = 1154721# 
Const a14 = 1739991# 
Const a15n = 1108499# 
Const a21 = 1776413# 
Const a23 = 865203# 
Const a25n = 1641052# 
 
Dim s10 As Double, s11 As Double, s12 As Double, s13 As Double, s14 As Double 
Dim s20 As Double, s21 As Double, s22 As Double, s23 As Double, s24 As Double 
'***********************************************************************
************************ 
'This subroutine seeds the MRG32k5a random number generator: 
Public Sub RNG_Seed() 
 
    Randomize (Timer)   'seeds the RND() function based on the current timer function 
 
    s10 = 2 
    s11 = 3 
    s12 = 5 
    s13 = 7 
    s14 = Int(Rnd * m1) 'the last seed value of the first component is randomly initialized 
 
    s20 = 11 
    s21 = 13 
    s22 = 17 
    s23 = 19 
    s24 = Int(Rnd * m2) 'the last seed value of the second component is randomly 
initialized 
 
End Sub 
'***********************************************************************
************************ 
'This subroutine is a floating-point implementation in VBA of a 32-bit CMRG of order 5 
with 2 
'...components based on the article by L'ecuyer, P.(1999). "Good parameters and 
implementations 
'...for combined multiple recursive random number generators." Operations Research, 
Vol 47, No 1, 
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'...159-164.  The program was originally written in C, and was translated to VBA by 
Jordan Lee. 
Public Function MRG32k5a() As Double 
 
    'Declaration of local variables 
    Dim k As Long                           'temp variable 
    Dim p1 As Double                        'next number in component 1 
    Dim p2 As Double                        'next number in component 2 
 
    '-------- Component 1 -------- 
    p1 = (a12 * s13) - (a15n * s10) 
    If p1 > 0# Then p1 = p1 - (a14 * m1) 
    p1 = p1 + (a14 * s11) 
    k = p1 / m1 
    p1 = p1 - k * m1 
    If p1 < 0# Then p1 = p1 + m1 
    s10 = s11 
    s11 = s12 
    s12 = s13 
    s13 = s14 
    s14 = p1 
 
    '-------- Component 2 -------- 
    p2 = (a21 * s24) - (a25n * s20) 
    If p2 > 0# Then p2 = p2 - (a23 * m2) 
    p2 = p2 + (a23 * s22) 
    k = p2 / m2 
    p2 = p2 - (k * m2) 
    If p2 < 0# Then p2 = p2 + m2 
    s20 = s21 
    s21 = s22 
    s22 = s23 
    s23 = s24 
    s24 = p2 
 
    '-------- Combination -------- 
    If p1 < p2 Then 
        MRG32k5a = (p1 - p2 + m1) * norm 
    Else 
        MRG32k5a = (p1 - p2) * norm 
    End If 
 
End Function 
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